- avl tree documentation and example

pull/51/head
Emir Pasic 9 years ago
parent 42299026d8
commit 65ced7c422

@ -24,6 +24,7 @@ Implementation of various data structures and algorithms in Go.
- [TreeBidiMap](#treebidimap)
- [Trees](#trees)
- [RedBlackTree](#redblacktree)
- [AVLTree](#avltree)
- [BTree](#btree)
- [BinaryHeap](#binaryheap)
- [Functions](#functions)
@ -70,6 +71,7 @@ Containers are either ordered or unordered. All ordered containers provide [stat
| [HashBidiMap](#hashbidimap) | no | no | no | key* |
| [TreeBidiMap](#treebidimap) | yes | yes* | yes | key* |
| [RedBlackTree](#redblacktree) | yes | yes* | no | key |
| [AVLTree](#avltree) | yes | yes* | no | key |
| [BTree](#btree) | yes | yes* | no | key |
| [BinaryHeap](#binaryheap) | yes | yes* | no | index |
| | | <sub><sup>*reversible</sup></sub> | | <sub><sup>*bidirectional</sup></sub> |
@ -589,6 +591,65 @@ func main() {
Extending the red-black tree's functionality has been demonstrated in the following [example](https://github.com/emirpasic/gods/blob/master/examples/redblacktreeextended.go).
#### AVLTree
AVL [tree](#trees) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Lookup, insertion, and deletion all take O(log n) time in both the average and worst cases, where n is the number of nodes in the tree prior to the operation. Insertions and deletions may require the tree to be rebalanced by one or more tree rotations.
AVL trees are often compared with redblack trees because both support the same set of operations and take O(log n) time for the basic operations. For lookup-intensive applications, AVL trees are faster than redblack trees because they are more strictly balanced. <sub><sup>[Wikipedia](https://en.wikipedia.org/wiki/AVL_tree)</sup></sub>
Implements [Tree](#trees) and [ReverseIteratorWithKey](#reverseiteratorwithkey) interfaces.
<p align="center"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/a/ad/AVL-tree-wBalance_K.svg/262px-AVL-tree-wBalance_K.svg.png" width="300px" height="180px" /><br/><sub>AVL tree with balance factors (green)</sub></p>
```go
package main
import (
"fmt"
avl "github.com/emirpasic/gods/trees/avltree"
)
func main() {
tree := avl.NewWithIntComparator() // empty(keys are of type int)
tree.Put(1, "x") // 1->x
tree.Put(2, "b") // 1->x, 2->b (in order)
tree.Put(1, "a") // 1->a, 2->b (in order, replacement)
tree.Put(3, "c") // 1->a, 2->b, 3->c (in order)
tree.Put(4, "d") // 1->a, 2->b, 3->c, 4->d (in order)
tree.Put(5, "e") // 1->a, 2->b, 3->c, 4->d, 5->e (in order)
tree.Put(6, "f") // 1->a, 2->b, 3->c, 4->d, 5->e, 6->f (in order)
fmt.Println(tree)
//
// AVLTree
// │ ┌── 6
// │ ┌── 5
// └── 4
// │ ┌── 3
// └── 2
// └── 1
_ = tree.Values() // []interface {}{"a", "b", "c", "d", "e", "f"} (in order)
_ = tree.Keys() // []interface {}{1, 2, 3, 4, 5, 6} (in order)
tree.Remove(2) // 1->a, 3->c, 4->d, 5->e, 6->f (in order)
fmt.Println(tree)
//
// AVLTree
// │ ┌── 6
// │ ┌── 5
// └── 4
// └── 3
// └── 1
tree.Clear() // empty
tree.Empty() // true
tree.Size() // 0
}
```
#### BTree
B-tree is a self-balancing tree data structure that keeps data sorted and allows searches, sequential access, insertions, and deletions in logarithmic time. The B-tree is a generalization of a binary search tree in that a node can have more than two children.

@ -0,0 +1,50 @@
// Copyright (c) 2015, Emir Pasic. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package examples
import (
"fmt"
avl "github.com/emirpasic/gods/trees/avltree"
)
// AVLTreeExample to demonstrate basic usage of AVLTree
func AVLTreeExample() {
tree := avl.NewWithIntComparator() // empty(keys are of type int)
tree.Put(1, "x") // 1->x
tree.Put(2, "b") // 1->x, 2->b (in order)
tree.Put(1, "a") // 1->a, 2->b (in order, replacement)
tree.Put(3, "c") // 1->a, 2->b, 3->c (in order)
tree.Put(4, "d") // 1->a, 2->b, 3->c, 4->d (in order)
tree.Put(5, "e") // 1->a, 2->b, 3->c, 4->d, 5->e (in order)
tree.Put(6, "f") // 1->a, 2->b, 3->c, 4->d, 5->e, 6->f (in order)
fmt.Println(tree)
//
// AVLTree
// │ ┌── 6
// │ ┌── 5
// └── 4
// │ ┌── 3
// └── 2
// └── 1
_ = tree.Values() // []interface {}{"a", "b", "c", "d", "e", "f"} (in order)
_ = tree.Keys() // []interface {}{1, 2, 3, 4, 5, 6} (in order)
tree.Remove(2) // 1->a, 3->c, 4->d, 5->e, 6->f (in order)
fmt.Println(tree)
//
// AVLTree
// │ ┌── 6
// │ ┌── 5
// └── 4
// └── 3
// └── 1
tree.Clear() // empty
tree.Empty() // true
tree.Size() // 0
}
Loading…
Cancel
Save