/* Copyright (c) 2015, Emir Pasic All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // Package redblacktree implements a red-black tree. // // Used by TreeSet and TreeMap. // // Structure is not thread safe. // // References: http://en.wikipedia.org/wiki/Red%E2%80%93black_tree package redblacktree import ( "fmt" "github.com/emirpasic/gods/containers" "github.com/emirpasic/gods/stacks/linkedliststack" "github.com/emirpasic/gods/trees" "github.com/emirpasic/gods/utils" ) func assertInterfaceImplementation() { var _ trees.Tree = (*Tree)(nil) var _ containers.ReverseIteratorWithKey = (*Iterator)(nil) } type color bool const ( black, red color = true, false ) // Tree holds elements of the red-black tree type Tree struct { Root *Node size int Comparator utils.Comparator } // Node is a single element within the tree type Node struct { Key interface{} Value interface{} color color Left *Node Right *Node Parent *Node } // NewWith instantiates a red-black tree with the custom comparator. func NewWith(comparator utils.Comparator) *Tree { return &Tree{Comparator: comparator} } // NewWithIntComparator instantiates a red-black tree with the IntComparator, i.e. keys are of type int. func NewWithIntComparator() *Tree { return &Tree{Comparator: utils.IntComparator} } // NewWithStringComparator instantiates a red-black tree with the StringComparator, i.e. keys are of type string. func NewWithStringComparator() *Tree { return &Tree{Comparator: utils.StringComparator} } // Put inserts node into the tree. // Key should adhere to the comparator's type assertion, otherwise method panics. func (tree *Tree) Put(key interface{}, value interface{}) { insertedNode := &Node{Key: key, Value: value, color: red} if tree.Root == nil { tree.Root = insertedNode } else { node := tree.Root loop := true for loop { compare := tree.Comparator(key, node.Key) switch { case compare == 0: node.Value = value return case compare < 0: if node.Left == nil { node.Left = insertedNode loop = false } else { node = node.Left } case compare > 0: if node.Right == nil { node.Right = insertedNode loop = false } else { node = node.Right } } } insertedNode.Parent = node } tree.insertCase1(insertedNode) tree.size++ } // Get searches the node in the tree by key and returns its value or nil if key is not found in tree. // Second return parameter is true if key was found, otherwise false. // Key should adhere to the comparator's type assertion, otherwise method panics. func (tree *Tree) Get(key interface{}) (value interface{}, found bool) { node := tree.lookup(key) if node != nil { return node.Value, true } return nil, false } // Remove remove the node from the tree by key. // Key should adhere to the comparator's type assertion, otherwise method panics. func (tree *Tree) Remove(key interface{}) { var child *Node node := tree.lookup(key) if node == nil { return } if node.Left != nil && node.Right != nil { pred := node.Left.maximumNode() node.Key = pred.Key node.Value = pred.Value node = pred } if node.Left == nil || node.Right == nil { if node.Right == nil { child = node.Left } else { child = node.Right } if node.color == black { node.color = nodeColor(child) tree.deleteCase1(node) } tree.replaceNode(node, child) if node.Parent == nil && child != nil { child.color = black } } tree.size-- } // Empty returns true if tree does not contain any nodes func (tree *Tree) Empty() bool { return tree.size == 0 } // Size returns number of nodes in the tree. func (tree *Tree) Size() int { return tree.size } // Keys returns all keys in-order func (tree *Tree) Keys() []interface{} { keys := make([]interface{}, tree.size) for i, node := range tree.inOrder() { keys[i] = node.Key } return keys } // Values returns all values in-order based on the key. func (tree *Tree) Values() []interface{} { values := make([]interface{}, tree.size) for i, node := range tree.inOrder() { values[i] = node.Value } return values } // Left returns the left-most (min) node or nil if tree is empty. func (tree *Tree) Left() *Node { var parent *Node current := tree.Root for current != nil { parent = current current = current.Left } return parent } // Right returns the right-most (max) node or nil if tree is empty. func (tree *Tree) Right() *Node { var parent *Node current := tree.Root for current != nil { parent = current current = current.Right } return parent } // Floor Finds floor node of the input key, return the floor node or nil if no ceiling is found. // Second return parameter is true if floor was found, otherwise false. // // Floor node is defined as the largest node that is smaller than or equal to the given node. // A floor node may not be found, either because the tree is empty, or because // all nodes in the tree is larger than the given node. // // Key should adhere to the comparator's type assertion, otherwise method panics. func (tree *Tree) Floor(key interface{}) (floor *Node, found bool) { found = false node := tree.Root for node != nil { compare := tree.Comparator(key, node.Key) switch { case compare == 0: return node, true case compare < 0: node = node.Left case compare > 0: floor, found = node, true node = node.Right } } if found { return floor, true } return nil, false } // Ceiling finds ceiling node of the input key, return the ceiling node or nil if no ceiling is found. // Second return parameter is true if ceiling was found, otherwise false. // // Ceiling node is defined as the smallest node that is larger than or equal to the given node. // A ceiling node may not be found, either because the tree is empty, or because // all nodes in the tree is smaller than the given node. // // Key should adhere to the comparator's type assertion, otherwise method panics. func (tree *Tree) Ceiling(key interface{}) (ceiling *Node, found bool) { found = false node := tree.Root for node != nil { compare := tree.Comparator(key, node.Key) switch { case compare == 0: return node, true case compare < 0: ceiling, found = node, true node = node.Left case compare > 0: node = node.Right } } if found { return ceiling, true } return nil, false } // Clear removes all nodes from the tree. func (tree *Tree) Clear() { tree.Root = nil tree.size = 0 } // Iterator holding the iterator's state type Iterator struct { tree *Tree node *Node } // Iterator returns a stateful iterator whose elements are key/value pairs. func (tree *Tree) Iterator() Iterator { return Iterator{tree: tree, node: nil} } // Next moves the iterator to the next element and returns true if there was a next element in the container. // If Next() returns true, then next element's key and value can be retrieved by Key() and Value(). // If Next() was called for the first time, then it will point the iterator to the first element if it exists. // Modifies the state of the iterator. func (iterator *Iterator) Next() bool { if iterator.node == nil { iterator.node = iterator.tree.Left() return iterator.node != nil } if iterator.node.Right != nil { iterator.node = iterator.node.Right for iterator.node.Left != nil { iterator.node = iterator.node.Left } return true } if iterator.node.Parent != nil { node := iterator.node for iterator.node.Parent != nil { iterator.node = iterator.node.Parent if iterator.tree.Comparator(node.Key, iterator.node.Key) <= 0 { return true } } iterator.node = node // fix: if parent didn't satisfy the comparator criteria } return false } // Prev moves the iterator to the previous element and returns true if there was a previous element in the container. // If Prev() returns true, then previous element's key and value can be retrieved by Key() and Value(). // Modifies the state of the iterator. func (iterator *Iterator) Prev() bool { if iterator.node == nil { return false } if iterator.node.Left != nil { iterator.node = iterator.node.Left for iterator.node.Right != nil { iterator.node = iterator.node.Right } return true } if iterator.node.Parent != nil { node := iterator.node for iterator.node.Parent != nil { iterator.node = iterator.node.Parent if iterator.tree.Comparator(node.Key, iterator.node.Key) >= 0 { return true } } iterator.node = node // fix: if parent didn't satisfy the comparator criteria } return false } // Value returns the current element's value. // Does not modify the state of the iterator. func (iterator *Iterator) Value() interface{} { return iterator.node.Value } // Key returns the current element's key. // Does not modify the state of the iterator. func (iterator *Iterator) Key() interface{} { return iterator.node.Key } // Begin resets the iterator to its initial state (one-before-first) // Call Next() to fetch the first element if any. func (iterator *Iterator) Begin() { iterator.node = nil } // End moves the iterator past the last element (one-past-the-end). // Call Prev() to fetch the last element if any. func (iterator *Iterator) End() { right := iterator.tree.Right() // ugly hack (TODO: use flags) iterator.node = &Node{Parent: right, Key: right.Key} } // First moves the iterator to the first element and returns true if there was a first element in the container. // If First() returns true, then first element's key and value can be retrieved by Key() and Value(). // Modifies the state of the iterator func (iterator *Iterator) First() bool { iterator.Begin() return iterator.Next() } // Last moves the iterator to the last element and returns true if there was a last element in the container. // If Last() returns true, then last element's key and value can be retrieved by Key() and Value(). // Modifies the state of the iterator. func (iterator *Iterator) Last() bool { iterator.End() return iterator.Prev() } // String returns a string representation of container func (tree *Tree) String() string { str := "RedBlackTree\n" if !tree.Empty() { output(tree.Root, "", true, &str) } return str } func (node *Node) String() string { return fmt.Sprintf("%v", node.Key) } // Returns all nodes in order func (tree *Tree) inOrder() []*Node { nodes := make([]*Node, tree.size) if tree.size > 0 { current := tree.Root stack := linkedliststack.New() done := false count := 0 for !done { if current != nil { stack.Push(current) current = current.Left } else { if !stack.Empty() { currentPop, _ := stack.Pop() current = currentPop.(*Node) nodes[count] = current count++ current = current.Right } else { done = true } } } } return nodes } // String returns a string representation of container func output(node *Node, prefix string, isTail bool, str *string) { if node.Right != nil { newPrefix := prefix if isTail { newPrefix += "│ " } else { newPrefix += " " } output(node.Right, newPrefix, false, str) } *str += prefix if isTail { *str += "└── " } else { *str += "┌── " } *str += node.String() + "\n" if node.Left != nil { newPrefix := prefix if isTail { newPrefix += " " } else { newPrefix += "│ " } output(node.Left, newPrefix, true, str) } } func (tree *Tree) lookup(key interface{}) *Node { node := tree.Root for node != nil { compare := tree.Comparator(key, node.Key) switch { case compare == 0: return node case compare < 0: node = node.Left case compare > 0: node = node.Right } } return nil } func (node *Node) grandparent() *Node { if node != nil && node.Parent != nil { return node.Parent.Parent } return nil } func (node *Node) uncle() *Node { if node == nil || node.Parent == nil || node.Parent.Parent == nil { return nil } return node.Parent.sibling() } func (node *Node) sibling() *Node { if node == nil || node.Parent == nil { return nil } if node == node.Parent.Left { return node.Parent.Right } return node.Parent.Left } func (tree *Tree) rotateLeft(node *Node) { right := node.Right tree.replaceNode(node, right) node.Right = right.Left if right.Left != nil { right.Left.Parent = node } right.Left = node node.Parent = right } func (tree *Tree) rotateRight(node *Node) { left := node.Left tree.replaceNode(node, left) node.Left = left.Right if left.Right != nil { left.Right.Parent = node } left.Right = node node.Parent = left } func (tree *Tree) replaceNode(old *Node, new *Node) { if old.Parent == nil { tree.Root = new } else { if old == old.Parent.Left { old.Parent.Left = new } else { old.Parent.Right = new } } if new != nil { new.Parent = old.Parent } } func (tree *Tree) insertCase1(node *Node) { if node.Parent == nil { node.color = black } else { tree.insertCase2(node) } } func (tree *Tree) insertCase2(node *Node) { if nodeColor(node.Parent) == black { return } tree.insertCase3(node) } func (tree *Tree) insertCase3(node *Node) { uncle := node.uncle() if nodeColor(uncle) == red { node.Parent.color = black uncle.color = black node.grandparent().color = red tree.insertCase1(node.grandparent()) } else { tree.insertCase4(node) } } func (tree *Tree) insertCase4(node *Node) { grandparent := node.grandparent() if node == node.Parent.Right && node.Parent == grandparent.Left { tree.rotateLeft(node.Parent) node = node.Left } else if node == node.Parent.Left && node.Parent == grandparent.Right { tree.rotateRight(node.Parent) node = node.Right } tree.insertCase5(node) } func (tree *Tree) insertCase5(node *Node) { node.Parent.color = black grandparent := node.grandparent() grandparent.color = red if node == node.Parent.Left && node.Parent == grandparent.Left { tree.rotateRight(grandparent) } else if node == node.Parent.Right && node.Parent == grandparent.Right { tree.rotateLeft(grandparent) } } func (node *Node) maximumNode() *Node { if node == nil { return nil } for node.Right != nil { node = node.Right } return node } func (tree *Tree) deleteCase1(node *Node) { if node.Parent == nil { return } tree.deleteCase2(node) } func (tree *Tree) deleteCase2(node *Node) { sibling := node.sibling() if nodeColor(sibling) == red { node.Parent.color = red sibling.color = black if node == node.Parent.Left { tree.rotateLeft(node.Parent) } else { tree.rotateRight(node.Parent) } } tree.deleteCase3(node) } func (tree *Tree) deleteCase3(node *Node) { sibling := node.sibling() if nodeColor(node.Parent) == black && nodeColor(sibling) == black && nodeColor(sibling.Left) == black && nodeColor(sibling.Right) == black { sibling.color = red tree.deleteCase1(node.Parent) } else { tree.deleteCase4(node) } } func (tree *Tree) deleteCase4(node *Node) { sibling := node.sibling() if nodeColor(node.Parent) == red && nodeColor(sibling) == black && nodeColor(sibling.Left) == black && nodeColor(sibling.Right) == black { sibling.color = red node.Parent.color = black } else { tree.deleteCase5(node) } } func (tree *Tree) deleteCase5(node *Node) { sibling := node.sibling() if node == node.Parent.Left && nodeColor(sibling) == black && nodeColor(sibling.Left) == red && nodeColor(sibling.Right) == black { sibling.color = red sibling.Left.color = black tree.rotateRight(sibling) } else if node == node.Parent.Right && nodeColor(sibling) == black && nodeColor(sibling.Right) == red && nodeColor(sibling.Left) == black { sibling.color = red sibling.Right.color = black tree.rotateLeft(sibling) } tree.deleteCase6(node) } func (tree *Tree) deleteCase6(node *Node) { sibling := node.sibling() sibling.color = nodeColor(node.Parent) node.Parent.color = black if node == node.Parent.Left && nodeColor(sibling.Right) == red { sibling.Right.color = black tree.rotateLeft(node.Parent) } else if nodeColor(sibling.Left) == red { sibling.Left.color = black tree.rotateRight(node.Parent) } } func nodeColor(node *Node) color { if node == nil { return black } return node.color }